Physicist or Astronomer

Observe, measure, interpret, and develop theories to explain celestial and physical phenomena using mathematics.

Interest Area: 
Thinking
Average Yearly Pay: 
$102095
Education Needed: 
Graduate Degree
Employment: 
Growing as Fast as the Average
Job Growth: 
16%
Job Prospects: 
Average

Is this career the right one for you?

Are you a Builder, a Thinker, a Creator, a Helper? Take the Career Surveyor test online and discover which careers are right for you!

Take the Test!

Job Duties: 

Physicists and astronomers typically do the following:

  • Develop scientific theories and models that attempt to explain the properties of the natural world, such as atom formation or the force of gravity
  • Plan and conduct scientific experiments and studies to test theories and discover properties of matter and energy
  • Write proposals and apply for research grants
  • Do complex mathematical calculations to analyze physical and astronomical data, such as data that may indicate the existence of planets in distant solar systems
  • Design new scientific equipment, such as telescopes and lasers
  • Develop computer software to analyze and model data
  • Write scientific papers that may be published in scholarly journals
  • Present research findings at scientific conferences and lectures
  • Career Overview

    Physicists and astronomers conduct research to understand the nature of the universe and everything in it. These scientists observe, measure, interpret, and develop theories to explain celestial and physical phenomena using mathematics. From the vastness of space to the infinitesimal scale of subatomic particles, they study the fundamental properties of the natural world and apply the knowledge gained to design new technologies.

    Physicists explore and identify basic principles and laws governing the motion, energy, structure, and interactions of matter. Some physicists study theoretical areas, such as the nature of time and the origin of the universe; others apply their knowledge of physics to practical areas, such as the development of advanced materials, electronic and optical devices, and medical equipment.

    Physicists design and perform experiments with sophisticated equipment such as lasers, particle accelerators, electron microscopes, and mass spectrometers. On the basis of their observations and analysis, they attempt to discover and explain laws describing the forces of nature, such as gravity, electromagnetism, and nuclear interactions. Experiments also help physicists find ways to apply physical laws and theories to problems in nuclear energy, electronics, optics, materials, communications, aerospace technology, and medical instrumentation.

    Astronomers use the principles of physics and mathematics to learn about the fundamental nature of the universe and its components, including the sun, moon, planets, stars, and galaxies. As such, astronomy is sometimes considered a subfield of physics. They also apply their knowledge to solve problems in navigation, space flight, and satellite communications and to develop the instrumentation and techniques used to observe and collect astronomical data.

    Most physicists and astronomers work in research and development. Some conduct basic research with the sole aim of increasing scientific knowledge. Others conduct applied research and development, which builds upon the discoveries made through basic research to develop practical applications of this knowledge, such as new devices, products, and processes. For example, knowledge gained through basic research in solid-state physics led to the development of transistors and, then, integrated circuits used in computers.

    Physicists also design research equipment, which often has additional unanticipated uses. For example, lasers are used in surgery, microwave devices function in ovens, and measuring instruments can analyze blood or the chemical content of foods.

    A small number of physicists work in inspection, testing, quality control, and other production-related jobs in industry.

    Much physics research is done in small or medium-sized laboratories. However, experiments in plasma, nuclear, and high-energy physics, as well as in some other areas of physics, require extremely large and expensive equipment, such as particle accelerators and nuclear reactors. Physicists in these subfields often work in large teams. Although physics research may require extensive experimentation in laboratories, research physicists still spend much time in offices planning, recording, analyzing, and reporting on research.

    Physicists generally specialize in one of many subfields, such as elementary particle physics, nuclear physics, atomic and molecular physics, condensed matter physics, optics, acoustics, space physics, or plasma physics. Some specialize in a subdivision of one of these subfields. For example, within condensed-matter physics, specialties include superconductivity, crystallography, and semiconductors. However, all physics involves the same fundamental principles, so specialties may overlap, and physicists may switch from one subfield to another. Also, growing numbers of physicists work in interdisciplinary fields, such as biophysics, chemical physics, and geophysics.

    Almost all astronomers do research. Some are theoreticians, working on the laws governing the structure and evolution of astronomical objects. Others analyze large quantities of data gathered by observatories and satellites and write scientific papers or reports on their findings. Some astronomers actually operate large space-based or ground-based telescopes, usually as part of a team. However, astronomers may spend only a few weeks each year making observations with optical telescopes, radio telescopes, and other instruments.

    For many years, satellites and other space-based instruments, such as the Hubble space telescope, have provided prodigious amounts of astronomical data. New technology has lead to improvements in analytical techniques and instruments, such as computers and optical telescopes and mounts, and is creating a resurgence in ground-based research.

    A small number of astronomers work in museums housing planetariums. These astronomers develop and revise programs presented to the public and may direct planetarium operations.

    Work environment. Most physicists and astronomers do not encounter unusual hazards in their work. Some physicists temporarily work away from home at national or international facilities with unique equipment, such as particle accelerators. Astronomers who make observations with ground-based telescopes may spend many hours working in observatories; this work usually involves travel to remote locations and may require working at night. Physicists and astronomers whose work depends on grant money often are under pressure to write grant proposals to keep their work funded.

    Physicists often work regular hours in laboratories and offices. At times, however, those who are deeply involved in research may work long or irregular hours. Astronomers may need to work at odd hours to observe celestial phenomena, particularly those working with ground-based telescopes.

    Training, Qualifications, and Advancement

    Because most jobs are in basic research and development, a doctoral degree is the usual educational requirement for physicists and astronomers. Master's degree holders qualify for some jobs in applied research and development, whereas bachelor's degree holders often qualify as research assistants or for jobs in other fields where a physics background is good preparation, such as engineering and technology.

    Education and training. A Ph.D. degree in physics or closely related fields is typically required for basic research positions, independent research in industry, faculty positions, and advancement to managerial positions. Graduate study in physics prepares students for a career in research through rigorous training in theory, methodology, and mathematics. Most physicists specialize in a subfield during graduate school and continue working in that area afterwards.

    Additional experience and training in a postdoctoral research appointment, although not required, is important for physicists and astronomers aspiring to permanent positions in basic research in universities and government laboratories. Many physics and astronomy Ph.D. holders ultimately teach at the college or university level.

    Master's degree holders usually do not qualify for basic research positions, but may qualify for many kinds of jobs requiring a physics background, including positions in manufacturing and applied research and development. Increasingly, many master's degree programs are specifically preparing students for physics-related research and development that does not require a Ph.D. degree. These programs teach students specific research skills that can be used in private-industry jobs. In addition, a master's degree coupled with State certification usually qualifies one for teaching jobs in high schools or at 2-year colleges.

    Those with bachelor's degrees in physics are rarely qualified to fill positions in research or in teaching at the college level. They are, however, usually qualified to work as technicians or research assistants in engineering-related areas, in software development and other scientific fields, or in setting up computer networks and sophisticated laboratory equipment. Increasingly, some may qualify for applied research jobs in private industry or take on nontraditional physics roles, often in computer science, such as systems analysts or database administrators. Some become science teachers in secondary schools.

    Holders of a bachelor's or master's degree in astronomy often enter an unrelated field where their strong analytical background provides good preparation. However, they are also qualified to work in planetariums running science shows, to assist astronomers doing research, and to operate space-based and ground-based telescopes and other astronomical instrumentation.

    Many colleges and universities offer a bachelor's degree in physics. Undergraduate programs provide a broad background in the natural sciences and mathematics. Typical physics courses include electromagnetism, optics, thermodynamics, atomic physics, and quantum mechanics.

    Approximately 190 universities offer Ph.D. degrees in physics; more than 60 additional colleges offer a master's as their highest degree in physics. Graduate students usually concentrate in a subfield of physics, such as elementary particles or condensed matter. Many begin studying for their doctorate immediately after receiving their bachelor's degree; a typical Ph.D. program takes about 6 years to complete.

    About 75 universities grant degrees in astronomy, either through an astronomy, physics, or combined physics-astronomy department. About half of all astronomy departments are combined with physics departments, while the remainder are administered separately. With about 40 doctoral programs in astronomy, applicants face considerable competition for available slots. Those planning a career in the subject should have a strong physics background. In fact, an undergraduate degree in either physics or astronomy is excellent preparation, followed by a Ph.D. in astronomy.

    Many physics and astronomy Ph.D. holders begin their careers in a postdoctoral research position, in which they may work with experienced physicists as they continue to learn about their specialties or develop a broader understanding of related areas of research. Initial work may be under the close supervision of senior scientists. As they gain experience, physicists perform increasingly complex tasks and achieve greater independence in their work. Experience, either in academic laboratories or through internships, fellowships, or work-study programs in industry, also is useful. Some employers of research physicists, particularly in the information technology industry, prefer to hire individuals with several years of postdoctoral experience.

    Other qualifications. Mathematical ability, problem-solving and analytical skills, an inquisitive mind, imagination, and initiative are important traits for anyone planning a career in physics or astronomy. Prospective physicists who hope to work in industrial laboratories applying physics knowledge to practical problems should broaden their educational background to include courses outside of physics, such as economics, information technology, and business management. Good oral and written communication skills also are important because many physicists work as part of a team, write research papers or proposals, or have contact with clients or customers who do not have a physics background.

    Certain sensitive research positions with the Federal Government and in fields such as nuclear energy may require applicants to be U.S. citizens and to hold a security clearance.

    Advancement. Advancement among physicists and astronomers usually takes the form of greater independence in their work, larger budgets, or tenure in university positions. Others choose to move into managerial positions and become natural science managers. Those who pursue management careers spend more time preparing budgets and schedules. Those who develop new products or processes sometimes form their own companies or join new firms to develop these ideas.

    Employment

    Physicists and astronomers held about 17,100 jobs in 2008. Physicists accounted for about 15,600 of these, while astronomers accounted for only about 1,500 jobs. In addition, there were about 15,500 physicists employed in faculty positions; these workers are covered in more detail in the Professor or College Instructor career profile.

    About 39 percent of physicists and astronomers worked for the scientific research and development services industry, which includes employees of the 36 Federally Funded Research and Development Centers. These centers, sometimes referred to as national laboratories, perform a significant amount of basic research in the physical sciences. They are funded by government agencies such as the Department of Energy and the Department of Defense, but are administered by universities or private corporations. The Federal Government directly employed another 22 percent, mostly in the U.S. Department of Defense, but also in the National Aeronautics and Space Administration (NASA) and in the U.S. Departments of Commerce, Health and Human Services, and Energy. Other physicists and astronomers worked in nonfaculty research positions at educational institutions and hospitals.

    Although physicists and astronomers are employed in all parts of the country, most work in areas in which universities, large research laboratories, or observatories are located.

    Job Outlook

    Physicists and astronomers should experience faster than average job growth, but may face competition for basic research positions due to limited funding. However, those with a background in physics or astronomy may have good opportunities in related occupations.

    Employment change. Employment of physicists and astronomers is expected to grow 16 percent, faster than the average for all occupations during the 2008-18 decade.

    Federal research expenditures are the major source of physics-related and astronomy-related research funds, especially for basic research. For most of the past decade there has been limited growth in Federal funding for physics and astronomy research as most of the growth in Federal research funding has been devoted to the life sciences. However, the America COMPETES Act, passed by Congress in 2007, sets a goal to double funding for the physical sciences through the National Science Foundation and the Department of Energy’s Office of Science by the year 2016, and recent budgets for these agencies have seen large increases. If these increases continue, it will result in more opportunities in basic research for Ph.D. physicists and astronomers.

    Although research and development expenditures in private industry will continue to grow, many research laboratories in private industry are expected to continue to reduce basic research, which includes much physics research, in favor of applied or manufacturing research and product and software development. Nevertheless, people with a physics background continue to be in demand in information technology, semiconductor technology, and other applied sciences. This trend is expected to continue; however, many of the new workers will have job titles such as computer software engineer, computer programmer, or systems analyst or developer, rather than physicist.

    Job prospects. In addition to job growth, the need to replace physicists and astronomers who retire or otherwise leave the occupation permanently will account for many job openings. In recent years the number of doctorates granted in physics has been somewhat greater than the number of job openings for traditional physics research positions in colleges and universities and in research centers. Recent increases in undergraduate physics enrollments may also lead to growth in enrollments in graduate physics programs, so that there may be an increase in the number of doctoral degrees granted that could intensify the competition for basic research positions. However, demand has grown in other related occupations for those with advanced training in physics. Prospects should be favorable for physicists in applied research, development, and related technical fields.

    Opportunities should also be numerous for those with a master's degree, particularly graduates from programs preparing students for related work in applied research and development, product design, and manufacturing positions in private industry. Many of these positions, however, will have titles other than physicist, such as engineer or computer scientist.

    People with only a bachelor's degree in physics or astronomy are usually not qualified for physics or astronomy research jobs, but they may qualify for a wide range of positions related to engineering, mathematics, computer science, environmental science, and some nonscience fields, such as finance. Those who meet State certification requirements can become high school physics teachers, an occupation in strong demand in many school districts. Some States require new teachers to obtain a master's degree in education within a certain time. (See the statement on teachers—kindergarten, elementary, middle, and secondary elsewhere in the Handbook.) Despite competition for traditional physics and astronomy research jobs, graduates with a physics or astronomy degree at any level will find their knowledge of science and mathematics useful for entry into many other occupations.

    Despite their small numbers, astronomers can expect good job prospects in government and academia over the projection period. Since astronomers are particularly dependent upon government funding, Federal budgetary decisions will have a sizable influence on job prospects for astronomers.

    Earnings

    Median annual wages of physicists were $102,890 in May 2008. The middle 50 percent earned between $80,040 and $130,980. The lowest 10 percent earned less than $57,160, and the highest 10 percent earned more than 159,400.

    Median annual wages of astronomers were $101,300 in May 2008. The middle 50 percent earned between $63,610 and $133,630, the lowest 10 percent less than $45,330, and the highest 10 percent more than $156,720.

    The average annual salary for physicists employed by the Federal Government was $118,971 in March 2009; for astronomy and space scientists, it was $130,833.

    For More Information

    Further information on career opportunities in physics is available from the following organizations:

    • American Institute of Physics, Career Services Division and Education and Employment Division, One Physics Ellipse, College Park, MD 20740-3843. Internet: http://www.aip.org
    • American Physical Society, One Physics Ellipse, College Park, MD 20740-3844. Internet: http://www.aps.org

    Post your comment

    Comments made by guests must be approved by a moderator. To publish your comment right away, register or log in first.
    The content of this field is kept private and will not be shown publicly.
    All comments are moderated. Please be courteous. Spammers will be fried and served on toast.